
King’s Legacy
RoboCup 2019
Team Description Materials

1.0 Team Details

Team Name King’s Legacy
Organisation Christ Church Grammar School, Western Australia
Country Australia
Primary Contact Patrick Louden
Email plouden@ccgs.wa.edu.au
Website https://ccgsrobotics.github.io/
GitHub https://github.com/CCGSRobotics
Thingiverse https://www.thingiverse.com/groups/ccgs-robotics

2.0 Introduction

King's Legacy, named after one of our founding members, is a student-
driven group of robotics enthusiasts from Christ Church Grammar School
in Western Australia. We began as a tight-knit group of passionate
tinkerers but have since grown into a fully-fledged school society
consisting of multiple teams focused on areas such as CAD/CAM
production, electrical engineering and software development.

Our robots are based on the Open Academic Robot Kit and include some
enhancements developed by our members including gamepad controls,
improved chassis designs and custom electronics configurations. Areas of
active development are the expansion of our robots' sensory capabilities,
and the development of models diverging from the OARKit design. We
have made all of our work open-source via GitHub and Thingiverse and is
now being regularly updated to reflect our progress.

Last year, we competed at the Montreal RoboCup, which highlighted the
strengths and weaknesses of our system, and have since then made
some changes towards working on the weaknesses.

mailto:plouden@ccgs.wa.edu.au
https://github.com/CCGSRobotics
https://www.thingiverse.com/groups/ccgs-robotics

3.0 System Description

3.1 Software

Our software system follows the client-server model in which the robot
(Raspberry Pi) acts as the server and another computer acts as the client.
This allows us to communicate with robot, monitor its sensors and control
it from a client device (such as a laptop) with a connected gamepad. A
significant amount of this year’s development time was invested in
enhancing this system.

3.1.1 Client Side

Our client-side application is a Node.js app built on the Electron
framework. It performs the following functions.
• Connects to a Node.js server application running on the robot.
• Accepts a raw H264 streams and displays using JavaScript and a

HTML5 canvas
• Uses a HTML5 controller API to get gamepad controller values.
• Sends plain-text instruction packets to the robot via UDP.

3.1.2 Server Side

The server application facilitates communication with the client using the
SocketServer module. BaseRequestHandler allows it to handle incoming
data from the connected client and call functions from it. Functions from
another file (emubot.py) are used to establish a TTL serial connection to
the robot’s servos and send commands to move them. The functions
either call moveJoint, which moves a servo on the arm or moveWheel,
which moves a wheel servo. It also performs the following functions.

• Executes system commands on behalf of the client via a Node.js
interface layer. This negates the need for users to execute system
commands on the robot via a separate SSH session as was
previously the case. Common commands include:
o Initiating the camera stream to the client.
o Starting the Python server application which directly controls

the robot’s servos.
• Listens for instruction packets sent via UDP.
• Listens for web socket information via a compatibility layer script.

This allows driving commands to be sent via http as well as from a
native application.

• Automatically resets the state of the Pi when a client disconnects
so that it is ready for the next client.

3.1.3 Sensors and Computer Vision

We continue to work towards improving our robot’s sensing capabilities.

Our current sensors are as follow:
- Temperature sensor (reading of the surrounding temperature)
- Carbon dioxide sensor
- Microphone (the Pi picks up and sends audio to the client)

The following capabilities are in active development:
- QR code reader
- Movement detector
- Hazmat sign reader
- Speaker (client sends audio to the Pi)

3.2 Camera Feed

We initiate a camera feed from the robot's Raspberry Pi camera with a
bash script that calls ‘Raspivid’ and pipes the output to the client using
‘netcat’. As mentioned in 3.1.2, this script is executed by the server
application when it receives a command to do so from the client. The
client application then intercepts this stream and displays it in a HTML5
canvas.

3.3 Communications

We have written setup scripts that configure the internal WiFi adapter of
the robot’s Raspberry Pi 3B+ to act as a 5GHz wireless access point.
Client devices can then connect to this to establish communication with
the robot. Our backup configuration relies on 5GHz USB WiFi dongle
connected to the Raspberry Pi and configured to act as an access point.

3.4 Hardware Description

3.4.1 Raspberry Pi 3 B+

The Raspberry Pi is our primary controller for all the parts of our robot.
Last year, we upgraded from a Pi 3 to Pi 3B+. The primary reason for this
was to be able to use the internal 5GHz WiFi adapter as an access point
instead of having to rely on an external USB dongle which consumed
extra space and could potentially become dislodged on rough terrain.

3.4.2 USB2AX Dongle

The USB2AX dongle enables the server application on the Raspberry Pi to
send instruction packets to the servos via a serial interface. This
component replaces the OpenCM board used on the original EmuBot.

3.4.3 Raspberry Pi Camera Module

The camera allows us to see what we are doing in the maze, without
needing line of sight to the robot. The signal from the camera is sent via
the Pi to the client device from which we view a live image feed.

3.4.4 TP-Link TL-WDN3200 5Ghz Wi-Fi USB Dongle

The dongle is used to create a wireless access point for communication
with the robot. This has been superceded in our primary configuration by
the interal WiFi adapter of the Raspberry Pi 3B+, however we continue to
keep one on hand for emergency backup purposes.

3.4.5 Dynamixel AX-12A and MX-28 Servos

We use AX-12A servos to move the tracks, flippers and camera on the
robot and a single MX-28 servo for moving the base of the arm. The
servos are daisy chained to each other and controlled by serial commands
sent from the Raspberry Pi via a USB2AX. We plan to swap the AX-12A
servos controlling the flippers with MX-28 servos in the future for added
strength and dexterity.

3.4.6 3A Turnigy UBEC Buzzer

This converts 12V power input from the battery to a 5V output that
powers the Raspberry Pi.

3.4.7 Relay Controlled Circuit Breaker

This is used as a safeguard against power surges and short circuits.
Power can be restored by sending a serial command from one of the
output pins on the Raspberry Pi. This system is also useful for resetting
the servos remotely if they become unresponsive on the track.

3.4.8 Servo Power Toggle Switch

This allows us to physically turn the servos on or off. It is useful when
performing tests on the robot to prevent it from moving unexpectedly.

3.4.9 External Power Adapter Connector

There is an external power connect on the front of the robot, so we do not
have to rely on a battery power during testing.

3.4.10 MacBook Air Running Ubuntu 16.04

This is our primary client device which we use for monitoring and
controlling the robot as well as for development purposes.

3.4.11 Logitech Gamepad F-310 (Handheld Game Controller)

This is our primary means of issuing commands to the robot. It can be
connected to the client device or directly to the robot.

3.4.12 3x TMP36 Analog Temperature Sensor

The TMP36 is a low-powered wide range analogue temperature sensor
that outputs a voltage proportional to the surrounding temperature.

3.4.13 Arduino Compatible Microphone Sound Sensor Module

This is a high-sensitivity analogue sound sensor with a digital output pin
for when the sound intensity reaches its threshold.

3.4.14 MAX9814 Electret Microphone Amplifier with Auto Gain
Control

The AGC in this amplifier means that loud sounds will be dampened and
quieted, so they don't 'clip' the audio, while quiet sounds are loudened.

3.4.15 1x Mono Enclosed Speaker 3W 4 Ohm

This is a small enclosed low-powered speaker with decent audio volume
and quality.

3.4.16 1x PAM8302 Adafruit Mono 2.5W Class D Audio Amplifier

This extra-small mono amplifier is surprisingly powerful with very high
efficiency.

3.4.17 1x UART Infrared CO2 Sensor (0-50 000 ppm)

This component is based on NDIR (non-dispersive infrared) technology
and automatically compensates for temperature.

3.5 Chassis Design

We have a CAD/CAM team dedicated to designing the chassis and moving
parts of the robot. We develop component designs using the 3D design
and engineering software CATIA and fabricate them using a 3D Printer,
Laser Cutter, and conventional workshop equipment.

After seeing the vast physical differences of the robots at the 2017 and
2018 RoboCup competitions, the CAD/CAM team decided to test various
prototypes based on our competitor’s designs. After extensive testing we
now favour a robot that manoeuvres using rotating ‘flippers’. We have
refer to this design as the ‘Flipper Bot’.

The components of our current configuration can be summarised as
follows:

• A flipped wheel chassis configuration, for reduced stress on the
wheel servos.

• Flippers attached to each wheel for increased manoeuvrability and
dexterity.

• Four sets of custom rubber wheel tracks.
• A gravel guard to prevent debris dislodging the tracks.
• A robot arm that contains housing for the battery.
• A grabber module mounted on the end of the arm for object

manipulation.
• A mount for the Pi Camera built into the grabber.

3.5.1 ‘Flipper Bot’ Chassis Configuration

Our Flipper Bot configuration debuted in the 2018 RoboCup Competition.
Since then we have made several enhancements to the original design
and aim to compete this year with an updated configuration that uses
shorter flippers. Testing so far indicates this should give us greater
manoeuvrability with less strain on the flipper servos.

The Flipper Bot’s primary strength is its adjustable wheel arms that help it
traverse uneven terrain. Other features of the design include a detachable
undercarriage that provides easy access to the wiring harness and
Raspberry Pi. It is made mostly of acrylic with a 3D printed arm mount
similar to the original EmuBot configuration. The camera is mounted on
the end of the arm for optimal visibility

3.5.2 Sensor Mounts

As we develop new sensing capabilities our CAD/CAM team designs
solutions for mounting the necessary sensor modules. Current sensor
mounts include a CO2 sensor, a temperature sensor and a microphone. In
development is a speaker mount and a laser pointer mount for the new
grabber (see 3.5.3)

3.5.3 Grabber Module

Nearing completion is a new grabber module that we intend to mount on
the end of the robot’s arm. Once finished, this should significantly
enhance our robot’s object manipulation capabilities. The grabber mount
will also include a mount for the camera and a laser pointer to assist in
guiding the grabber to its target.

4.0 Operations and Procedures

4.1 Transportation and Setup in the Field

Our robot and most of the components required to operate it can be
contained within a single pelican case. Standard setup involves switching
the power on to the robot which activates the servos and boots the
Raspberry Pi. A connection to the Raspberry Pi can be established by
connecting to its self generated WiFi access point. Finally, connecting a
controller to the client device and opening the client application enables
an operator to monitor and control the robot remotely.

4.2 Team Composition and Specialisations

Our group primarily consists of two teams, the CAD/CAM team and the
software development team.

Our CAD/CAM specialists are skilled in using CATIA, a 3D design and
engineering software, and are experienced at recognising physical weak
points and developing new strategies to minimise stress on components.

The software developers primarily work on ways to improve and optimise
the capabilities, autonomy and ease of operation of the robot.

4.3 Development Tools

4.3.1 Software Tools

• Visual Studio Code
• IDLE (Python scripts)
• Atom Editor (GUI)
• Vim (GUI also, mostly for server-side operations using SSH)
• CATIA (CAD/CAM)

4.3.2 Python 3.5.2 Modules

• Numpy
• Imutils
• Cv2
• Zbar
• PIL
• Threading
• SocketServer
• Sys

4.6 Open Source Contributions

4.6.1 Software

Last year, our team used the Python3 code available under the repository
at https://github.com/CCGSRobotics/RoboCup-2018-Driving-Code.
However, with a push to move King’s Legacy to a graphical interface, the
main client/server interface has been changed from Python to a mixture
of Python and NodeJS. The new repository can be found at
https://github.com/CCGSRobotics/RoboHUD, where progress has been
tracked using projects, issues and releases more extensively than in
previous years. This repository is home to both the GUI client application
source code and the server application code.

We maintain a separate repository for code associated with sensing
capabilities. This can be found under the Sensory-Abilities-2018
repository on our GitHub page.

4.6.2 Physical Components

All of our physical component CAD/CAM files can be found on our
Thingiverse page (https://www.thingiverse.com/groups/ccgs-robotics)

4.6.3 Electronic Components

Our wiring schematics which includes the relay controlled circuit breaker
module are attached to this document (See Annex B).

https://github.com/CCGSRobotics/RoboCup-2018-Driving-Code
https://github.com/CCGSRobotics/RoboHUD
https://www.thingiverse.com/groups/ccgs-robotics

5.0 Conclusion

Our original robot began as a reproduction of the OARKit EmuBot. From
our experiences at the previous three RoboCups in Leipzig, Nagoya and
Montreal we have made significant improvements and modifications to
our robot’s physical design and associated software systems.

Between now and this year’s competition, we plan to further develop and
implementation new sensory capabilities and focus on refining our
procedures for navigating the robot on the terrain.

6.0 References

The Open Academic Robot Kit (OARKit)
http://oarkit.intelligentrobots.org

http://oarkit.intelligentrobots.org/

7.0 Appendix

Annex A – Robot Photos

New Flipper Bot

Original Emubot

Annex B – Electronics Schematics

Annex C – Parts List and Costings

	King’s Legacy
	RoboCup 2019
	Team Description Materials
	1.0 Team Details
	2.0 Introduction
	3.0 System Description
	4.0 Operations and Procedures
	5.0 Conclusion
	6.0 References

